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AbslmL l i e  operator techniques and the Magnus expansion are developed in the 
framework of classical mechanics. l h i s  leads to an exponential perturbation thenly that 
p r g c ~ e ~  the canonical character at each order of approximation. The treatment is kept 
as close as possible to the quantum mechanical case in order to take full advantage 
of the propenies of the expansion. The explicit relationship with secular perturbation 
theoly is established and a recursive procedure for obtaining higha-arder approximanu 
is provided. Finally, the formalism is applied to b o  problems of physical interest. 

1. Introduction 

There are many areas of physics where perturbation techniques of classical mechanics 
are of great usefulness: optics [l], celestial mechanics [2], problems concerning non- 
integrable systems [3] or control of beam dynamics in accelerators [4], to quote just 
a few examples. Analytic description of the evolution of physical systems in phase 
space is rarely possible so that in most cases one has to handle approximate solutions. 
Various methods have been devised over the years to find the best approximanu for 
each situation. Among them Lie algebraic methods proved to be much superior to 
earlier perturbation techniques and led to powerful computational algorithms [&lo]. 

Besides their practical interest, Lie techniques also provide a deep connection 
between quantum and classical mechanics. For instance, in quantum mechanics time- 
displacement can be described by a unitary operator acting on states of the Hilbert 
space. In turn, the evolution in classical mechanics can be considered as a symplectic 
map (i.e. a canonical transformation) in phase space. This canonical transformation 
may be thought of as being performed by a Lie operator, which is the key point of 
this work. Our goal is to apply the so-called Magnus expansion [ll-U] to classi- 
cal mechanics in analogy with what has been done in a variety of time-dependent 
quantum mechanical problems [14]. The Magnus expansion enables one to construct 
exponential representations of the time-displacement operator. For this reason, it is 
also called exponential perturbation theory. In the present paper we elaborate the 
appropriate formalism to solve classical Hamiltonian systems via an exponential-like 
canonical transformation. 

We a n y  out a treatment of the time evolution of classical systems as close as 
possible to the quantum mechanical formalism. This permits to use efficiently some 
well established properties of the quantum Magnus expansion. In particular, we show 
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that the formalism preserves the symplectic character of the mapping, unlike the 
secular perturbation scheme. This feature is the dual of the unitarity property of the 
time-evolution operator of a quantum system. 

In section 2 we set up the notation and present some concepts concerning Lie 
operators. In section 3 we introduce the classical Magnus formalism, study some of its 
propelties and establish the connection with secular perturbation theory. In section 
4 we explain the recursive methods for obtaining higher-order Magnus approximants. 
An application of the preceding techniques is carried out for two examples of physical 
interest in section 5. Finally in section 6 we discuss the results. 

J A Oteo and J Ros 

2. Lie operators 

In this section we introduce briefly the notation and some mathematical tools that 
will be required in the following. More complete discussions can be found in the 
specific literature [2,4,5,6,8,9]. 

Let H be a Hamiltonian with generalized coordinates qi, and generalized mo- 
menta pi, in a 2N-dimensional phase space. For convenience, we introduce the 
vector whose 2 N  components are ( t l r . .  . rt2N) = ( q , ,  . . . , qN, p , ,  . . . , pN). Us- 
ing the notation of [SI, the Lie operator associated with a fUnCh0n f on the phase 
space will be represented by : f :, and its action on any function g defined by 

: fa  = If, SI (2.1) 

where the square bracket stands for the Poisson bracket of classical mechanics 

Here J is the symplectic 2 N  x 2 N  matrix 
On another hand, we denote the commutator of two Lie operators by {:f:, :g:}. 

It turns out that the Lie operator of a Poisson bracket of two functions equals the 
commutator of their two associated Lie operators 

- I  ( O  I ) .  

:[f,g]: = {:f:,:g:}. (2.3) 

For a phase space of dimension ZN, the Lie operator associated to the function 
f (sometimes referred to as Lie derivative, or vector field of the observable f )  is 
given by 

We are going to deal with operator-like functions of the form exp(:f:), which are 
defined by their Thylor series expansion. Thus, we introduce a Poisson nested bracket 
and an iterated commutator. Whenever a power of : f :  appears within brackets 
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we must interpret it as a repeated action. Specifically, we build up nested Poisson 
brackets of the form 

For the sake of illustration, we write down the Baker-Hausdorff identity [11,12] in 
this notation: 

(2.6j 

Eventually, since we will be involved with time derivatives of exponential Lie operators 
we pave the road by writing down the following useful formula due to Wilcox [U]: 

.:fi .... -:f: ~ ..:+ . e. .y.r - . e ,  .g:. 

The last form is obtained by using (2.5), (2.6) and the overdot indicates time differ- 
entiation. 

3. The classical Magnus expansion 

Consider an explicitly time-dependent Hamiltonian H ( E ,  1) .  The trajectories E(1) in 
the phase space, starting from initial conditions [( to), can be interpreted as the result 
of a, in general nonlinear, symplectic map 

E @ )  = M U ) € ( t o ) .  ( 3 4  

It can be shown that M obeys the equation of motion [6,8] 

M = - M : H :  (3.2) 

with the initial condition M ( t , )  = I, in order to guarantee that M is continuously 
connected with the identity. When the condition [ H ( t ) , H ( t ' ) ]  = 0 holds for all t 
and t', then the solution exp(- ,[io dt' :H( t ' ) : )  follows for equation (3.2). Otherwise, 
a formal solution for a general H is given by 7 e x p ( -  fo d t ' : H ( t ' ) : ) ,  where 7 stands 
for Dyson's chronological product 

When comparing time-dependent problems in classical and quantum physics a 
comment is in order: strictly speaking one can always avoid explicitly time-dependent 
problems in classical Hamiltonian mechanics. The price to be paid is just to increase 
the number of degrees of freedom and appropriately change the Hamiltonian. This, 
however, may complicate the algebraic structure of the problem. 

The Magnus method consists in looking for a solution of the form M ( 1 )  = 
exp(:R(t):), for equation (3.2). This form has to be taken as an ansatz to solve 
equation (32)  and it k not meant to imp!y that it exhtr for a genera! Hamiltonia~, 
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Assuming it does, the question is then to find the differential equation for :a:. From 
the Wdcox formula it follows that 

J A Oteo and J Ros 

1 - e-:R: . 
M = M :  a:. :cl: 

Comparing this result with the equation of motion gives the relation 

1 - e-:R: . 
a = - H .  :a: 

Consequently, obeys the equation of motion 

-:a: n. 1 - e-:R: n= 

(3.3) 

(3.4) 

(3.5) 

Setting now :a: = :ai:, we obtain the successive Magnus approximants, :ai:, 
by identifying terms of the same order in the characteristic coupling constant of the 
Hamiltonian. The first three terms are: 

t r .. _ _  R, = - Jt d t l H l  

with Hi E H(ti). 
When the Hamiltonian has a solvable piece, it may be advisable to integrate it 

explicitly in order to increase the rate of convergence of the expansion. In quantum 
mechanical calculations this is achieved by changing from the Schrodinger picture to 

a similar procedure. 
&terdction picture pjj, Eere, the fomaiism of Lie operators io sei up 

Suppose that the Hamiltonian decomposes as follows 

H = Ho + H ,  (3.7) 

where the time-displacement operator associated with Ha has the exact solution 

exp(:na(t,ta):) z exp 

Assuming solutions of the form M = M, exp(:O0:), it turns out that MI obeys the 
evolution equation 

M, = -MI:HI: (3.8) 

H I -  - e:nO:H,. (3.9) 

with the transformed Hamiltonian 
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Then, one seelcs a solution MI = exp(:R1:), by means of the Magnus formalism. 
So, equation (3.8) shows that the time evolution operator MI evolves according to 

the 'perturbation' Hamiltonian HI. This change into the interaction picture can also 
be accomplished within the more usual formalism. Let E = E (  1 ,  x )  be the solution Of 
the dynamical problem associated with H,, with initial conditions E(0,x)  = x. If in- 
stead of taking x as given initial values we interpret them as variable parameters then 
one can easily prove that E = <(l, X) is a time-dependent canonical transformation 
and that X(t) satisfies canonical equations of motion with Hamiltonian H,.  

In the quantum mechanical case the Magnus expansion in the Schriidinger picture 
may fail to converge owing to the presence of poles in the complex 1-plane. we 
must point out that the divergencies are originated just by the diagonal piece of the 
Hamiltonian H in that picture. This problem, which has been widely discussed in 
the literature [16], also occurs for the Lie operators in classical mechanics. As a 
matter of fact there is no general rule as how to decompose H in a soluble piece 
and a perturbation. Sometimes the most obvious choice spoils the convergence Of the 
Magnus expansion, as will be seen in section 5.  

The only general result about convergence is a theorem due to Magnus [I11 
which states the existence of :Q: whenever any pair of its eigenvalues Xk satisfies 
A, - A, + i 2 r n i  (n integer). Otherwise, the derivative of the Magnus operator 
does not exist at these points. However, this result is not of much utility as the exact 
solution must be hown in advance. 

Eventually, the symplectic character of the Magnus expansion to all orders follows 
directly from the properties of Lie operators [SI. It is interesting to observe that in 
secular perturbation theory the canonical character of the transformation is lost when 
we truncate the expansion. In this respect the canonical perturbation theory (e.g. the 
Poincark-Von Zeipel theoty) behaves more like the Lie approach. 

4. Recursive generation of the Magnus expansion terms 

Although the first three terms of the Magnus series are explicitly given in equation 
(3.6), there is no recipe to build up the general term. However, there are a number 
of recursive algorithms that have been developed in the quantum mechanical case 
[17,18]. In this section we proceed to fit them into our scheme, and give just their 
final form. An exhaustive proof can be found in [17]. 

The property expressed by equation (2.3) allows us to work either with functions 
or with operators. If one uses the operator formalism then the methods exposed in 
[17] apply without further ado. It is, however, more convenient to deal with Poisson 
brackets and, afterwards, to compute the corresponding Lie derivative. In this case 
the method of interest is the so-called commutator approach which provides the 
derivatives of successive terms in the expansion of the Magnus operator. The geneml 
formula reads 

n - 1  
'k. ( k ) .  
IC! 

.cl ' - -:If: :cl": = c -3, . ( n  2 2) ' 1 ' -  
k = l  
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where Bn are Bernoulli numbers Bl = -1/2) and S!ikl can be obtained recursively 

(4.2) 

s!, l )  - - - [ a"-1, HI s(n-1) n = -[a;-', HI. 

Alternative schemes connect secular perturbation theory with the Magnus expan- 
sion. For the sake of completeness we give here some formulae that will be employed 
in section 5. If the perturbation series is written as M = I + Pn, then one 
finds 

PI = :a1: 
Pz = :a2: + -:a1: 1 '  

2! 
1 1 
2! 3! 

Pa = :a3: + -(:R,::Z2,:+ :Qz::fI1:) + -:a1? (4.3) 

where the exponents and products stand for successive action of operators. The corre- 
sponding recursive procedure is developed in [17]. Here, the absence of commutators 
prohibits a structure in terms of Poisson brackets. Notice that these simple expres- 
sions provide the explicit connection between secular and exponential perturbation 
theory. 

5. Some examples 

(i) Consider the Hamiltonian of a linearly forced one-dimensional harmonic oscillator 

H = $(P' + 4') + f (Oq (5.1) 

with the initial conditions q(0)  = 4,. p ( 0 )  = p,. Here f(t) is an arbitrary function 
of time and, without loss of generality, we have set t ,  = 0. According to equation 
(2.4) the associated Lie operator reads 

: H :  = ( 4  + f ( t ) ) a ,  - P a ,  ( 5 4  

where a,, a,, represent partial derivative operators. According to the discussion 
following equation (3.7), it is convenient to work in the interaction picture. Using 
equation (3.9), where :a,: = t ( p a ,  - 48,); and the Baker-Hausdorff identity, (2.6), 
we readily obtain 

:H, :  = f ( t ) (cosiap -s inla , )  (5.3) 

H I  = f ( t ) ( q c o s t + p s i n t ) .  (5.4) 

which may be thought of as corresponding to the function 
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In this case only the first order gives a non-vanishing contribution to R' leading to 
the exact solution 

:RI: = F.8, + Fca, (5.5) 

F,(t) E - dt'f(t ')cost ' .  1 F,(t) E dt'f(t')sin t' 1 
The exact mapping M = exp(:R1:) exp(:n,:) yields eventually 

Of course, the same result can be obtained by direct integration of the Hamilton 
equations. The derivation given above is merely intended as a check of the new 
method presented here. 

(ii) Another widely investigated system is the parametrically driven harmonic oscilla- 
tor. The Hamiltonian for this situation can be written as 

H = i(P2 + 42)  + f(t)¶2. 

:H: = [1+ Z f ( t ) ] q B ,  - p a , .  

(5.7) 

The corresponding Lie operator is given by 

(5.8) 

If we proceed as before and compute the Lie operator of the Hamiltonian in the 
interaction picture we get :H,:  = f ( t )  [sin(zt) (pa, - pa,) + 2cos2(t) qap - 
2sin2(t)pa,) ,  which contains an undesirable diagonal piece: pap - 48,. This il- 
lustrates the discussion in section 3 concerning the choice of appropriate picture. 
Therefore we use equation (5.8) to carry out the calculation. Unliie the preced- 
ing example, here we are faced with an expansion that does not end. We compute 
the first and second orders of both the Magnus expansion and secular perturbation 
theory. 

Substitution of equation (5.8) into equation (3.6) yields 

:ai: = F ( t ) ( ~ a ,  + 
:R2: = G(t)(pa, - @,) 

+ [ F ( t )  - (1 - to)l(qap - 
(5.9) 

with the following definitions 

t 
dt'f(t') G ( t ) E - /  d t ' [ F ( t ' ) + ( t ' - t , ) f ( t ' ) ] .  (5.10) 

t o  

The secular perturbation operators, PI and Pz. are readily obtained from equation 
(4.3). 
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The three operators: 
. . - .  .a. = .pq: = pa, - qa, 
:b: $q2  - p 2 :  = + paq 
. 'c' . = - 1. .q2 + pa: = - paq 

span a closed algebra, Therefore, an exponential-like mappi~ng, if it ex&@, must be 
of the form e x p [ a ( f ) : a :  + P ( t ) : b  + y(f):c:]. Substitution into equation (3.8) then 
leads to a system of coupled nonlinear differential equations for the three functions 
a ( t ) ,  p( t ) ,  y(t). This is a well established alternative procedure [12] but the new 
system is usually even more intricate than the starting equations of motion. For later 
use it is, however, of interest to know the symplectic map generated by the above 
linear combination. After some algebra we get 

eo:n:+O:b:+-,:c: 

where q2 = a2 + p2 - yz. It is straightfonvard to verify that this transformation is 
canonical as its Jacobian W satisfies the symplectic condition WTJW = J .  

and compare it with the Magnus approximation. One of the simplest possible choices 
is the double step function 

) (5.11) = [cosh 17 - ( a / d  sinh vln + I (P  - Y)/VIP sinh II 
( P )  ( [cosh 17 + ( a / v )  sinh VIP t [ (P  + Y ) / v I ~  sinh 1) 

..,~ we . 
cnODSe -.~ ~ ~ ~ ~ a pariicujrt form of f i i j  for which the emc.ii soiuiion & howx 

For 1 > T the exact trajectories then read 

(5.12) 

(5.13) 

in terms of initial conditions q, = q( to ) ,  p, = p ( t , )  with 1, < 0 and w = m. 
Unm D :r thn 1 Y F) -m+-:-. 
11\1.1 I C  Y LU\1  1 h 1 II.'lL,,A. 

cos T ( S  - t) 
--T s in  T ( S  - t )  

T-' sin T ( S  - t )  
cos P ( S  - 1 )  

R ( r ; s , t ) =  (5.14) 

Writing :01: + :a2: = a ( t ) : a :  + P(t):b: + y(t):c:, and taking into a m u n t  equa- 
tions (5.9), (5.10) one finds 

t < T  

t > T { i cy :  - T)eT/2 
a ( t )  = 

P(2) = - B ( t )  

y(t)  = to - t - O(t) 

where we have defined the function 
t < O  

O ( t )  = d / 2  O < t $ T  
{:TI2 T < t .  

(5.15) 

(5.16) 
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The a p p r o d a t e  trajectories up to second order are obtained from 

(5.17) 

where the superscript indicates the order of the Magnus approximation. After U” 
puting the integrals of equation (5.10) and with the aid of equation (5.11) we get 

sinh 17 sinh 17 
Po cosh 1) - cr - 

cosh 7 + a - 
(5.18) II 

sinh 17 sinh 7 
40 17 

with a, P and y given by equations (5.15), (5.16). 
The same computation in the secular perturbation scheme is readily carried out 

by taking into account equation (4.3). The corresponding approximate trajectories up 
to second order are given by 

where 

(5.19) 

(5.20) 

In figure 1 we have plotted the exact trajectories, equation (5.13), and the approx- 
imations provided by equations (5.15)-(5.20) for initial conditions qo = 0, p ,  = 1.5, 
to = -1. The exact solution is represented by the solid curve. The dot-dashed and 
dotted lines stand for the second order of the Magnus expansion, equation (5.18), 
and secular perturbation theory, equation (5.20), respectively. The first-order approx- 
imations are quite close to that of second order and therefore, to simplify the figures, 
we have not plotted them. In figures l(u) and l(b) we have set T = 5 and T = 1 
respectively, and E = 0.2, to  < t < 6 for both of them. Comparison of these figures 
permits an understanding of the effect of increasing ox decreasing T, with E ked, on 
the approximate trajectory. It turns out that the smaller is T ,  the better is the fit to 
the exact solution. This agrees with the well established fact that in quantum mechan- 
ics the Magnus expansion gives the best approximation in the sudden perturbation 
regime. In figure l(c) we have set T = 5, to  < 1 < 6, and increased the perturba- 
tion: E = 0.3. Comparison with figure l(a) indicates that the Magnus approach up 
to second order becomes worse with increasing E. Eventually, in figure l(d) we have 
represented the results for E = 0.3, T = 1, over a longer time-interval: to 6 t < 20. 
As a consequence of the canonical character of the Magnus approximation no secular 
behaviour appears, unlike secular perturbation theory which diverges except for very 
short times in all cases. 
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Flsorc 1. "ajeclories in phase space generated by the Hamiltonian de0ned in equation 
(5.7) with input values: (a) 6 = 0.2,  T = 5 ;  (b) L = 0.2 ,  T = 1; (c) c = 0.3T = 5 ;  
(dJ f = 0.3,T = 1. The initial conditions a= qo = 0, po = 1.5, to  = -1, and 
the time-inte~al cormponds to (4 b, c)  t o  6 t 6 6 and (d )  to 6 t < 20. Ihe solid 
line represenb the exact solution. The dotdashed cuNe stands for the second Magnus 
appmximant according to equation (5.19). The dotted line corresponds to the second 
approximation of secular perturbation given by equation (5.21). 

6. Discussion 

We have adapted the Magnus formalism to classical Hamiltonian systems. The 
method does not require any generating function, yet produces a canonical trans- 

too. We have also given some formulae and recursive procedures for computing the 
different orders of the expansion. 

In analogy with quantum mechanics we have shown how to transform to an 
interaction picture in which part of the original Hamiltonian has been integrated out. 

An application of the Magnus method to two physical examples has been camed 

formatie!!. The .n!!!!ectiQ~ with secu!.r pe.t:rbrtiefi thee7 hr. bec" exp!icit!y shew 
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out. In the first one, the exact solution has been reached. In the second case an 
approximate solution up to second order has been obtained. For not too large values 
of the parameters it mimics very well the exact solution. 

The perturbation approach which is closest to that of Magnus, in the sense that it 
uses Lie algebraic techniques, is that of Dragt and Finn [4,8] (DF). In their scheme, 
one deals with a Hamiltonian H(E,  t ) ,  for which the variables E are expressed with 
respect to some given trajectory. After that, one looks for factorized solutions 

M = . . .exp(:f,:) exp(:f3:)exp(:f2:) (6.1) 

where each function f, is a homogeneous polynomial of degree n in the variables 
( ( t o ) .  They give explicit formulae to compute up to n = 6. Formally at least, one 
could try to use the Baker-Campbell-HausdorlT (BCH) formula [ l l ,  121 to convert 
the above product of exponentials into a unique exponential. For this reason it 
is not surprising that the formulae of DF IS] for computing f, have a structure 
similar to that of Magnus, equations (3.6), (4.1), (4.2). The convenience to deal with 
either a sole exponential or a product must be analysed in each situation. Here we 
restrict ourselves to point out that the construction of an exponential representation 
is possible by a direct but formal way. Of course the problem of convergence of the 
series remains open in the generai situation. 

We note in passing that the DF method could be adapted to work in the framework 
of quantum mechanics. 'Rvo different infinite product representations of the time 
evolution operator were formulated by Fer [19] and Wilcox [12]. The DF method 
provides a third alternative. 

Other methods [3,7] have been devised for Hamiltonians which split into two 

respectively. Here we have taken 1, = 0. The basic idea consists in supposing that an 
approximate symplectic map can be obtained in the form exp(--t:H,:) exp(-t:H,:). 
Then, by using the BCH formula (truncated to some order) the product can be 
approximated by a unique exponential. Tb do this one proceeds by computing ap- 
proximately the iogarithm of the above expression. This recipe improves when one 
. y , L L ' L L I L ' U . I U  L,, "Ill, "'p,*, LW U,,* "1 L11L. y1L.W" "I 11. A Y 1  U L ~ , U l l r \ l )  L L L I  ay-  

proximant exp(-$t:H,:) exp(-t:H1:) exp(-$l:H,:) seems to be better than the 
former one. More elaborate symmetrization procedures have also been proposed 
[7,20]. Notice, however, that this situation is more restrictive than the one we have 
treated here. As a matter of fact, one should compare exp(-t:H,:)exp(-t:H1:) 
with exp(:Q':)exp(--l:Hl:), where the interaction picture is defined by H,. It is 
clear that t h e  first product represents in genera! a pnnr substitute for the exact time- 
evolution operator. 

The Magnus expansion and the reviewed methods are powerful tools for solvimg 
time-dependent problems. It should, however, be kept in mind that great care must 
be exercised in practical applications because convergence problems may arise. 

say hr ~ H, + x,, .W.~l, so;ut~o,rrs exp(-itK,tj exp(-iihJ,lj 

c..mmnrr&nr r71 A t k  I P I ~ P ~ ~  +- -10 -6 +kn niarnr -f U Ihr & r r q n m  thn on 
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